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Emergence of Antibiotic Resistance in Upper and 
Lower Respiratory Tract Infections
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For many years, a considerable
amount of evidence has shown
that the overuse of antibiotics is

counterproductive and possibly
harmful. Numerous papers in the
medical literature have given expert
opinions on the optimal treatment for
infections, depending on the site of
the infection, the organisms involved,
and their susceptibility patterns.
However, a wide gap often exists

between the accepted medical wis-
dom and what actually happens in
clinical practice. This gap between
academic and advisory committee
recommendations and the actions of
primary care physicians must be nar-
rowed.

Although the most urgent concern
is public health, this situation also has
an economic component. As common
pathogens become more resistant,

Presentation Summary
The increase in antibiotic resis-

tance is of great concern to the
medical community. The treat-
ment of respiratory tract infec-
tions are significantly impacted
by resistance, as 67% of antibiot-
ic use in adults and 87% in chil-
dren is for the treatment of such
infections. The most common
pathogens implicated in these
infections are Streptococcus pneu-
moniae, Haemophilus influenzae,
and Moraxella catarrhalis, and
isolates of all 3 have developed
resistance to some of the antibi-
otics currently on the market. In
1997, one third of S. pneumoniae
strains were classified as peni-
cillin resistant, up to 50% of 
H. influenzae strains produced 
ß-lactamase, and all M. catarrhalis
strains produced ß-lactamase. As
resistance can vary with geo-
graphic region and specific popu-

lations, one way to determine the-
most effective antibiotic for an
infection is to ascertain the resis-
tance pattern of these pathogens
from local laboratories or national
surveillance studies. Breakpoints
using pharmacodynamic data based
on drug concentration present for
at least 40% of the dosing interval,
or area under the serum concentra-
tion curve:minimum inhibitory con-
centration ratios have been valuable
for comparing the activities of oral
agents. Of the currently available ß-
lactams and macrolides, only amox-
icillin/clavulanate and daily intra-
muscular ceftriaxone are active
against more than 90% of all 3 respi-
ratory pathogens. Newer quinolones
are also active against these
pathogens, but overuse is very likely
to result in rapid development of
resistance, and their use should be
reserved for patients with treatment
failure or significant drug allergies.
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clinicians have fewer treatment
options and may resort to the newer,
broader-spectrum agents. The newer
agents can increase healthcare costs
dramatically in a system already
experiencing pressure to reduce
costs. Thus, it is essential from both a
medical and an economic perspective

to establish rational use of antibiotics
in clinical practice.

Antibiotic Use in 
Respiratory Infections

Antibiotics are the second largest
category of drugs prescribed by pri-
mary care physicians, exceeded only
by cardiovascular agents.1 It is esti-
mated that in 1998, 261 million
courses of antimicrobial therapy were
prescribed in the United States in
ambulatory settings.1 This rate is
139% higher than that for 1992.
Further, during that 6-year period,
prescriptions for expensive broad-
spectrum drugs, such as cephalo-
sporins, increased dramatically, while
prescriptions for less expensive, nar-
row-spectrum drugs, such as peni-
cillins, decreased significantly.2

Treatment of respiratory tract
infections—ie, those that affect the
sinus cavities (sinusitis), ears (otitis
media), bronchi (bronchitis), and
lungs (pneumonia)—accounts for
67% of antibiotic use in adults and
87% in children (Figures 1 and 2),3

with estimates that as many as half of
these prescriptions may be inappro-
priate.4,5 The excessive and often inap-
propriate use of antibiotics in treating
respiratory tract infections has
undoubtedly contributed to increased
resistance to these antibiotics in 
the most prevalent pathogens, ie,
Streptococcus pneumoniae, Haemo-
philus influenzae, and Moraxella
catarrhalis.

Acute otitis media (AOM) is the
most frequent office diagnosis in chil-
dren,6 with 75% experiencing 3 or
more episodes by 7 years of age.7

However, although the disease can
cause considerable morbidity, compli-
cations are fewer than with lower 
respiratory tract infections, such as
community-acquired pneumonia (CAP)
and acute exacerbation of chronic
bronchitis (AECB). Both of these infec-
tions are of serious concern in
immunocompromised patients and in
elderly individuals who have limited

Figure 1. 1997 Adult Antibiotic Usage by Diagnosis

Source: Data from Physician Drug and Diagnosis Audit (PDDA). Reprinted with
permission from Scott-Levin PMSI Inc; Newton, PA; 1997.

Figure 2. 1997 Pediatric Antibiotic Usage by Diagnosis

Source: Data from Physician Drug and Diagnosis Audit (PDDA). Reprinted with
permission from Scott-Levin PMSI Inc; Newton, PA; 1997.



. . .  RESISTANCE IN UPPER AND LOWER RESPIRATORY TRACT INFECTIONS . . .

respiratory reserves, and both carry a
risk of mortality. Sinusitis, while
rarely fatal, can be one of the most
difficult infections to treat and some-
times requires surgical intervention to
effect a cure.

Most bacterial infections of the res-
piratory tract have an inciting factor,
such as a viral infection or a preexist-
ing chronic condition such as allergy,
asthma, eustachian tube abnormality,
sinus obstruction, or compromised
immune system. Although the bacter-
ial infection is often regarded as a 
primary event, it is usually an oppor-
tunistic secondary invader that
infects the patient because of the
favorable existing environment. In a
study conducted in the early 1990s, a
distinct association was found
between invasive pneumococcal dis-
ease in adults and isolation of adeno-
viruses, respiratory syncytial viruses
(RSVs), and influenza viruses.8 Other
studies have indicated links between
AOM in children and common respi-
ratory viruses.9

With this in mind, one key to
reducing antibiotic use would be pre-
vention of the primary viral infection.
A promising development for the
future is an RSV vaccine. RSV has
been implicated as a major cause of
viral AOM as well as being a major
precursor to bacterial AOM.10 One
study that found AOM in up to 32% of
children with a concurrent RSV infec-
tion concluded that RSV increased
the risk for developing AOM more
than any other viral agent (Figure 3).11

Common Respiratory 
Tract Pathogens 

Although S. pneumoniae, H.
influenzae, and M. catarrhalis all
cause respiratory tract infections,
their prevalence tends to be site relat-
ed. S. pneumoniae is the most fre-
quently reported bacterial pathogen
in CAP,12 AOM,13 and acute sinusitis,
while H. influenzae is the predomi-
nant pathogen in AECB, causing 32%
to nearly 50% of bacterial exacerba-

tions.14,15 M. catarrhalis is an impor-
tant cause of AOM in very young chil-
dren and is typically the organism
isolated in the first onset of otitis
media in children younger than 6
months of age.16 M. catarrhalis is
identified in patients with AOM,
AECB, and acute sinusitis about 13%
of the time17 but is rarely isolated from
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Figure 3. Etiology of Viral Infections in 197 Patients With Acute
Otitis Media*

*Values do not add up to 100% because of rounding.
RSV = Respiratory syncytial virus.
Source: Reference 11.

Table 1. Principal Bacterial Causes of Community-Acquired
Respiratory Tract Infections

Acute
Pathogen AOM* AECB† Sinusitis‡§ CAP||

S. pneumoniae 29% 16.4% 39% 15.3%

H. influenzae 26% 25% 26% 10.9%

M. catarrhalis 12% 14.5% 3% <1.0%

AOM = Acute otitis media; AECB = acute exacerbation of chronic bronchitis; CAP =
community-acquired pneumonia.
Source: *Reference 18; †Reference 14; ‡Reference 19; §Adult cases, excluding viruses
and adjusted to reflect 100% of bacterial cases; ||Reference 12.
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patients with CAP. The principal bac-
terial causes of community-acquired
respiratory tract infections are shown
in Table 1.12,14,18,19

Complicating the primary care
physician’s decision-making process
is the confusing list of antibiotics
approved for respiratory tract in-
fections, including penicillins,
macrolides, tetracyclines, cephalo-
sporins, and fluoroquinolones. Table 2
lists many of the antibiotics approved

for use in acute respiratory infections.
Each of these drugs has varying degrees
of effectiveness against the different
pathogens involved in these infections.
One way to determine the most effec-
tive antibiotic to use for a particular
infection is to ascertain the resistance
pattern of the causative organism.

Resistance Patterns 
and Mechanisms

Antibiotics are effective when they
interfere with the basic metabolic
functions of susceptible pathogens.
They work by inhibiting DNA replica-
tion or disrupting the synthesis of 
cellular proteins or cell walls.
However, bacteria have proven to be
enormously resilient and have
evolved a number of methods of resis-
tance in the relatively short time that
antibiotics have been in use.

Bacterial resistance is manifested
through 4 general mechanisms
(Figure 4).20 Pathogens may exhibit
one or more of these mechanisms of
resistance:

• alteration of proteins in the
antibiotic target site (eg, peni-
cillin-binding proteins), which
inhibits antibiotic binding, or
creation of a second target site,
which causes the antibiotic to
bypass the susceptible target;

• production of enzymes that inac-
tivate or destroy antimicrobials
(eg, ß-lactamases);

• reduction of cellular permeability,
which results in inadequate
accumulation of antibiotic; and 

• development of active transport
systems (eg, pumps), which leads to
inadequate intracellular drug levels.

Resistance may be either inherent
or acquired.20 Acquired resistance is
spread from one pathogen to another
via transformation, conjugation, or
transduction. Both pneumococci and
H. influenzae are naturally trans-
formable and capable of incorporating
small segments of foreign, but related
DNA, into their genes.20 Sites of

Table 2. Selected Antibiotics Approved for Use in Acute Respiratory
Infections Listed by Class

Penicillins Fluoroquinolones Cephalosporins Macrolides

Amoxicillin Ciprofloxacin Cefaclor Azithromycin

Amoxicillin/ Grepafloxacin Cefdinir Clarithromycin

Clavulanate Levofloxacin Cefixime Erythromycin

Ampicillin Ofloxacin Cefpodoxime

Sparfloxacin Cefprozil

Trovafloxacin Ceftibutin

Cefuroxime

Loracarbef

Figure 4. Mechanisms of Microbial Resistance to Antibiotics

Source: Murray BE. New aspects of antimicrobial resistance and resulting thera-
peutic dilemmas. J Infect Dis 1991;163:1185-1194. Adapted with permission
from The University of Chicago Press.
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DNA/RNA mutation that cause antibi-
otic resistance have been identified
for many antibiotics (Table 3).20-25

Resistance/susceptibility rates are
defined in terms of minimum
inhibitory concentration (MIC)
breakpoints. A MIC50 is the MIC that
inhibits 50% of strains of pathogen,
while a MIC90 is the MIC that inhibits
90% of strains. Pneumococci are con-
sidered susceptible to penicillin when
the MIC is ≤ 0.06 µg/mL, intermediate
at a MIC of 0.12 to 1.0 µg/mL, and
resistant at a MIC of ≥ 2.0 µg/mL.26

With bacterial resistance being a
global concern, a number of studies
are tracking the development of resis-
tance. The Alexander Project, an
ongoing international multicenter
study, has been monitoring antimicro-
bial susceptibility of lower respiratory
tract pathogens since 1992. Addition-
ally, an epidemiologic survey of 6 US
regions, tracking susceptibility of 
S. pneumoniae and H. influenzae to
more than 10 antimicrobials, has
recently been completed. The results
of a survey of susceptibility of 
M. catarrhalis otitis media isolates
also have recently been made avail-
able. Data from these latter studies
are presented in Table 4.27-30

S. Pneumoniae
In the 1970s, all strains of S. pneu-

moniae were susceptible to penicillin,
with a modal value of 0.015 µg/mL. By
1979, 5% of strains isolated in the
United States were showing resis-
tance.31 This figure climbed to 23.6%
in 1995, and by 1997, resistance rates
in pneumococci isolates were 33.5%
to 51%.27,32 While isolates were rarely
found to be fully penicillin resistant
during the 1980s, one third of strains
were classified as resistant in 1997.27

Currently, some strains of S. pneumo-
niae have penicillin and amoxicillin
MICs of 8 µg/mL.33

Resistance rates to penicillin (inter-
mediate and [fully] resistant strains
combined) were 50% overall in 1997
and reached 60% in some areas of the

United States.27 Because the resistance
mechanism of S. pneumoniae is an
alteration of penicillin-binding pro-
teins, other ß-lactam antimicrobials
also have reduced activity against peni-
cillin-resistant strains. A 1995 survey
found that 3.4% of S. pneumoniae iso-
lates were resistant to cefotaxime.26

Macrolide resistance in S. pneumo-
niae followed a pattern similar to that
of penicillin resistance, with little
resistance exhibited in the 1970s and
1980s. By the 1990s, strains of 
S. pneumoniae were appearing that
exhibited resistance caused by 2
genes that are widespread in the
pathogen—the ermB gene, which

Table 3. Mechanisms of Bacterial Resistance

Modification of Target Enzyme or Receptor

Mechanism Drug

Altered penicillin-binding proteins ß-lactams

DNA gyrase mutations Quinolones

Methylation of 23S RNA Macrolides, clindamycin

DNA-directed RNA polymerase mutation Rifampin

Dihydropteroate synthetase mutation Sulfonamides

Dihydrofolate synthetase mutation Trimethoprim

N-acyl-D-alanyl-D-alanine modification Glycopeptides

Prevention of Access to Target

Mechanism Drug

Altered porin channels ß-lactams, quinolones

Increased efflux Tetracycline, quinolones, macrolides

Enzymatic Inactivation of the Drug

Inactivating Enzymes Affected Antibiotics

ß-lactamases ß-lactams

Modification of molecule Aminoglycosides
(adenylation, phosphorylation,
acetylation)

Chloramphenicol acetyltransferase Chloramphenicol

Source: References 20-25.
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encodes for an adenine dimethylase
and reduces affinity for both macro-
lides and clindamycin, and the more
recently recognized mefE gene, which
encodes for a macrolide-specific efflux
mechanism. This latter gene confers
resistance to macrolides, but not to
clindamycin.34,35

Although the resistance mecha-
nisms to macrolides and penicillins in
S. pneumoniae differ, a strong corre-
lation exists between them, with all
macrolides (eg, erythromycin,
azithromycin, and clarithromycin)
exhibiting MICs of ≥32 mg/L against
many penicillin-resistant strains.36

Resistance of S. pneumoniae to
macrolides is absolute and cannot be
overcome by increasing the dose, as
can be done with many ß-lactams.

While resistance to non-ß-lactam
antimicrobials, such as the macro-
lides, is associated with penicillin
resistance in S. pneumoniae, no cor-
relation exists with resistance to
quinolones.17 Quinolones prevent bac-
terial DNA synthesis by inhibiting

DNA gyrase,37 an enzyme that controls
the shape of bacterial DNA.38 One of
the major concerns with the use of
quinolones in the treatment of 
S. pneumoniae infection is the risk that
resistance will develop rapidly through
mutation. Although rare in the United
States, quinolone resistance is cur-
rently being found in 0.5% to 0.8% of
strains from Western Europe, and
pneumococci readily develop resis-
tance to quinolones in vitro. The
quinolone resistance mechanisms of
strains derived in vitro are identical to
those of wild-type strains and similar
to the mechanisms seen in other bac-
terial species.39 Therefore, quinolones
should be kept as reserve agents to pre-
serve their activity.

Factors associated with drug-resis-
tant pneumococcal colonization and
disease include geographic location,
age (children younger than 2 years of
age have the highest prevalence), fail-
ure to respond to previous ß-lactam
antibiotic therapy, day care atten-
dance, and, particularly in adults,

nosocomial acquisition
and serious underlying
diseases.2,40 Resistance
in S. pneumoniae may
also be a pharmacoki-
netic problem, as it
occurs more readily in
patients who have not
completed a full course
of therapy41 and who
have been prescribed
ß-lactam antibiotics
with short durations 
of time above the
MIC90.29,42

H. Influenzae
The most important

mechanism of resis-
tance in H. influenzae
is the production of ß-
lactamase. There are 2 
distinct types of ß-lac-
tamase found in this
species: the TEM-1
enzyme and the ROB-

Table 4. Percentage of S. pneumoniae, H. influenzae, and M. catarrhalis Isolates
Susceptible to Antimicrobial Agents Using Pharmacodynamic Breakpoints

% of Strains Susceptible

Antimicrobial Pharmacodynamic S. pneumoniae† H. influenzae† M. catarrhalis‡

Agent Breakpoints* (N = 1476) (N = 1678) (N = 50)
(µg/mL)

Amoxicillin 2.0 93.5 56.5 10

Amoxicillin/
Clavulanate 2.0 93.8 97.5 100

Azithromycin 0.12 69.2 0 100

Cefaclor 0.5 22.4 1.7 14

Cefixime 1.0 52.1 100 100

Cefprozil 1.0 62.6 14.4 6

Cefuroxime 1.0 62.9 78.1 54

Ciprofloxacin 1.0 — 99.9 100

Clarithromycin 0.25 69.8 0.1 100

Loracarbef 0.5 10.7 9.4 18

Source: *Reference 29,30; †Reference 27; ‡Reference 28.
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1 enzyme.42-44 TEM-1, the much more
common enzyme, is found in 92% to
93% of ß-lactamase-producing strains
of H. influenzae.45,46

The prevalence of ß-lactamase-
mediated resistance to ampicillin
among clinical isolates of H. influen-
zae has more than doubled in recent
years, from 15% in 1984 to 36% in
1995.26,47 In 1997, 42% of strains over-
all, and in some areas of the United
States up to 50% of strains, produced
ß-lactamase.27 H. influenzae suscepti-
bility to alternative oral antibiotics
varies. Rates of resistance to amoxi-
cillin/clavulanate (2.5%) and cefixime
(0%) remain low but are higher for
cefuroxime (21.9%) and are extreme-
ly high for clarithromycin (99.9%),
cefprozil (85.6%), and cefaclor
(98.3%) (Table 4).27

H. influenzae resistance to ampi-
cillin that is not ß-lactam-mediated is
presumed to be attributable to the
alteration of penicillin-binding pro-
teins.26 However, these ß-lactamase-
negative, ampicillin-resistant strains
of H. influenzae are rare and are
thought to account for less than 0.5%
of isolates.47

Resistance to the quinolones
ciprofloxacin and ofloxacin is virtually
nonexistent.27,33 With H. influenzae as
a leading cause of AECB, quinolones
have been shown to be effective
against this serious infection, and they
compare well clinically with ß-lac-
tams and other traditional agents
(Table 5).48-52

M. Catarrhalis
In the United States, nearly 100%

of M. catarrhalis strains now pro-
duce ß-lactamase and are resistant
to penicillin, ampicillin, and amoxi-
cillin.28 Because it is a normal com-
ponent of oropharyngeal flora, M.
catarrhalis originally was viewed as
a nonpathogen. However, its patho-
genic nature was recognized by
1980, and in the decade following,
signs of significant resistance began
to surface.41,53

Two major ß-lactamases, BRO-1
and BRO-2, are produced by 
M. catarrhalis.54 These enzymes differ
from the H. influenzae ß-lactamase in
that they are chromosomal, are pro-
duced in small amounts, and remain
tightly associated with cells.26 BRO-1
appears to confer greater resistance to
ß-lactams than BRO-2, possibly
because of a difference in the amount
of enzyme produced by the 2 strains.54

Despite the early development of 
ß-lactamase resistance, M. catarrhalis
remains susceptible to some cephalo-
sporins. Macrolides, tetracyclines,
amoxicillin/clavulanate, cefixime, and
quinolones all have excellent activity
against this pathogen (Table 4).26 In
fact, throughout the Alexander
Project, azithromycin has proved to
be the most potent agent against 
M. catarrhalis, having a MIC90 of
0.03 mg/L to ≤0.06 mg/L.36

Pharmacokinetics, Pharmaco-
dynamics, and Breakpoints

Because current susceptibility
breakpoints for many oral antimicro-
bial agents no longer correspond with
more recent clinical, microbiological,

Table 5. Activity of Fluoroquinolones Against H. influenzae, 
M. catarrhalis, and S. pneumoniae

H. influenzae M. catarrhalis S. pneumoniae*

Antimicrobial MIC50 MIC90 MIC50 MIC90 MIC50 MIC90

Ciprofloxacin 0.015 0.01 0.03 0.06 1.0 2.0

Ofloxacin 0.025 0.05 0.12 0.12 1.0 2.0

Levofloxacin 0.03 0.03 0.06 0.06 1.0 2.0

Sparfloxacin 0.015 0.03 0.03 0.03 0.25 0.5

Grepafloxacin 0.008 0.008 0.008 0.016 0.125 0.25

Trovafloxacin 0.015 0.03 0.03 0.03 0.125 0.25

MIC = minimum inhibitory concentration.
*The susceptibility breakpoint for ciprofloxacin is 1; for ofloxacin, 2; for levo-
floxacin, 2; for sparfloxacin, 0.5; for grepafloxacin, 0.5; for trovafloxacin, 1.
Source: References 48-52.



S658 THE AMERICAN JOURNAL OF MANAGED CARE AUGUST 1999

. . .  PRESENTATIONS . . .

pharmacokinetic, and investigational
experience, investigators have pro-
posed a new approach based on
pharmacokinetic/pharmacodynamic
(PK/PD) modeling and on clinical
studies that have measured bacterio-
logic outcome and evaluated this in
relation to drug susceptibilities.55-57

The activity of ß-lactams and
macrolides has been shown to
depend on the time the serum con-
centration exceeds the MIC of the
agent, with clinical success occur-
ring in more than 80% of cases when
the concentration of the agent
exceeds the MIC of an infecting
strain for more than 40% to 50% of
the dosing interval.55,56

Using standard dosing regimens and
the serum pharmacokinetics of these
agents, the serum concentrations that
are maintained for at least 40% to 50%
of the dosing interval can be deter-
mined and used as PK/PD breakpoints.
Different PK/PD parameters correlate
with clinical outcome with fluoro-
quinolones and azalides, and break-
points can be derived from the 24-hour
area under the serum concentration
curve (AUC):MIC ratio.56 Clinical cure
correlates best when the AUC:MIC
ratio exceeds 25 for these agents in
immunocompetent animal models,
and MIC breakpoints have been
derived from the formula AUC:25.

Application of these PK/PD break-
points to oral agents for current
strains of the common respiratory
tract pathogens is shown in Table 4.
Agents to which more than 90% of
current strains of S. pneumoniae are
susceptible include amoxicillin and
amoxicillin/clavulanate; the next
most active agents are cefuroxime,
cefprozil, azithromycin, and clar-
ithromycin. Additionally, the amoxi-
cillin dose can be increased from 45
to 90 mg/kg/day, which improves the
activity of this agent even further
against current strains of pneumococ-
ci.30 Agents to which more than 90% of
current strains of H. influenzae and
M. catarrhalis are susceptible include

amoxicillin/clavulanate and cefixime,
with cefuroxime being the next most
active agent. Although the newer
quinolones are also active against all 3
pathogens, these agents should be
reserved for treatment failures or for
patients with drug allergies to pre-
serve this situation. Intramuscular
ceftriaxone can be used for treatment
failures as well. However, as quino-
lones are generally not approved for
pediatric use, macrolides may need to
be used for treatment failures with 
ß-lactams or for patients who are
truly penicillin-allergic.

Using Antibiotics in the 
Resistance Era

One of the biggest challenges in
dealing with respiratory tract infec-
tions is that the pathogens cannot be
obtained readily in diseases such as
otitis media and sinusitis. The reali-
ties of a busy primary care practice
and the cost considerations involved
preclude routine culturing of
pathogens before initiating treatment.
As a result, most respiratory tract
infections are, by necessity, treated
empirically.

As already discussed, infections
caused by penicillin-resistant S.
pneumoniae can be treated suc-
cessfully by administering conven-
tional (40 to 45 mg/kg/day) or high
(80 to 90 mg/kg/day) doses of amox-
icillin, either alone or as amoxi-
cillin/clavulanate, which also will
cover ß-lactamase-producing organ-
isms such as H. influenzae and M.
catarrhalis.30 The clavulanate dose
should not be increased,30 and until
new formulations are available,
both amoxicillin and amoxicillin/
clavulanate should be prescribed.
Administering the same total daily
dose of amoxicillin twice a day
results in similar pharmacokinetics
to the older 3-times-daily regimen.58

Unfortunately, administration of
macrolides at higher doses can-
not overcome resistance in 
S. pneumoniae.41



VOL. 5, NO. 11, SUP. THE AMERICAN JOURNAL OF MANAGED CARE S659

. . .  RESISTANCE IN UPPER AND LOWER RESPIRATORY TRACT INFECTIONS . . .

In general, healthcare providers
should be encouraged to use antibi-
otics with favorable pharmacokinetics
(listed in Table 4), strong safety pro-
files, and compliance-enhancing fea-
tures. Of the currently available
ß-lactams and macrolides, only amox-
icillin/clavulanate and daily intramus-
cular ceftriaxone cover more than
90% of strains of all 3 respiratory
pathogens.36

Conclusion
In order to combat the rising trend

of resistance, specific recommenda-
tions for the appropriate treatment of
bacterial respiratory diseases should
be developed and implemented.
Guidelines should be based on the
prevalence of resistant strains of bac-
teria by geographic region and must
clearly define the clinical indications
for antibiotics in all respiratory infec-
tions. They also should include diag-
nostic strategies (eg, tympano-
centesis) and alternative treatments
(eg, combining amoxicillin with amox-
icillin/clavulanate and using longer
courses of therapy) for clinical failures
that may be associated with resistant
strains. Treatment guidelines can also
assist physicians and other allied
healthcare professionals in explaining
the appropriateness of therapeutic
recommendations to patients who
exert pressure on physicians to pre-
scribe antibiotics for viral infections
and as a preventive measure.
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