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M ost predictive models in healthcare have relied upon 

diagnosis information from health insurance claims or 

other administrative data. Such claims-based predictive 

models have been used extensively by health plans and government 

agencies for provider profiling and payment, underwriting, and 

prioritizing patients for care management.1 Although claims remain 

an important source of risk data, the widespread implementation 

of electronic health records (EHRs) and other clinical informa-

tion technology systems offers a new source of data on disease 

severity and health status, as most EHRs contain information 

not captured in claims, such as laboratory values, vital signs, and 

clinical assessments.2

In the inpatient setting, laboratory tests have been used to assess 

the risk of mortality across a range of conditions, including acute 

myocardial infarction, congestive heart failure, diabetes, ischemic and 

hemorrhagic stroke, pneumonia, and septicemia.3-7 These predictive 

assessments of mortality risk have incorporated blood chemistries, 

hematology, and blood gases. Predictive models for mortality 

performed better after adding laboratory risk markers, but similar 

models predicting 30-day readmission did not improve as much.8

Another case for laboratory data has been made for case-mix 

adjustment of inpatient admissions using diagnosis-related groups 

(DRGs).9,10 Clinical laboratory results combined with inpatient 

administrative data incrementally improved the ability of DRGs to 

explain the length of inpatient stays; however, Medicare Severity 

DRGs and other DRG versions do not incorporate laboratory data 

for inpatient classification.

Laboratory tests can be powerful predictors among certain patient 

populations. For example, patients with diabetes who maintained 

reduced glycated hemoglobin (A1C) levels (ie, had better glycemic 

control) had lower annual costs than patients with higher levels.11 

The goal of this study was to develop and evaluate an approach for 

transforming common outpatient laboratory tests into risk measures 

that could be useful when added to population-level predictive 

models. Our objective was to determine result ranges for several 

candidate blood tests that were associated with increased costs 
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ABSTRACT

OBJECTIVES: This exploratory study used outpatient 
laboratory test results from electronic health records 
(EHRs) for patient risk assessment and evaluated whether 
risk markers based on laboratory results improve the 
performance of diagnosis- and pharmacy-based predictive 
models for healthcare outcomes. 

STUDY DESIGN: Observational study of a patient cohort 
over 2 years.

METHODS: We used administrative claims and EHR 
data over a 2-year period for a population of continuously 
insured patients in an integrated health system who 
had at least 1 ambulatory visit during the first year. We 
performed regression tree analyses to develop risk 
markers from frequently ordered outpatient laboratory 
tests. We added these risk markers to demographic and 
Charlson Comorbidity Index models and 3 models from the 
Johns Hopkins Adjusted Clinical Groups system to predict 
individual cost, inpatient admission, and high-cost patients. 
We evaluated the predictive and discriminatory performance 
of 5 lab-enhanced models.

RESULTS: Our study population included 120,844 patients. 
Adding laboratory markers to base models improved R2 
predictions of costs by 0.1% to 3.7%, identification of high-cost 
patients by 3.4% to 121%, and identification of patients with 
inpatient admissions by 1.0% to 188% for the demographic 
model. The addition of laboratory risk markers to 
comprehensive risk models, compared with simpler models, 
resulted in smaller improvements in predictive power.

CONCLUSIONS: The addition of laboratory risk markers can 
significantly improve the identification of high-risk patients 
using models that include age, gender, and a limited number 
of morbidities; however, models that use comprehensive risk 
measures may be only marginally improved.
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in the year after the tests were performed. We 

hypothesized that certain ranges of component 

results from blood tests in the base year would 

be associated with higher healthcare costs 

and increased inpatient utilization during the 

subsequent year. We also hypothesized that 

laboratory risk markers based on component 

ranges would improve predictive risk models 

for these outcomes, including models with 

demographic and Charlson Comorbidity Index 

(CCI) risk markers and 3 models from the Johns 

Hopkins Adjusted Clinical Groups (ACG) system.

METHODS
Data Source and Study Population 

We obtained data from HealthPartners, Inc (Bloomington, Minnesota), 

a health insurer and large integrated delivery system. Its database 

contains structured EHR data, including encounter diagnoses and 

laboratory test results; administrative data that included benefit 

eligibility files; and claims data with International Classification of 

Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnoses, 

Current Procedural Terminology (CPT) procedure codes from 

inpatient and outpatient settings, and filled prescriptions with 

National Drug Codes from outpatient pharmacies. HealthPartners 

provided these data for patients who were receiving care at facilities 

owned by the healthcare system. 

Our study population included 120,844 patients who were 

continuously enrolled in 2012 and 2013 and had at least 1 visit to 

1 of 5 HealthPartners outpatient clinics in the Minneapolis-St. Paul 

metropolitan area in 2012. 

Data Preparation

To harmonize the coding of test orders across HealthPartners’ entities, 

we mapped the internal HealthPartners codes to Logical Observation 

Names Identifiers and Codes (LOINC). LOINC is a common language 

for identifying health measurements, observations, and documents, 

and it is commonly used for laboratory orders and findings.12

The assignment of LOINC was a 2-step process. We first used the 

Regenstrief LOINC Mapping Assistant to suggest potential LOINC, 

which were turned over to a pathologist for final review in the 

second step.13 All laboratory tests that we selected for this study 

were mapped to LOINC. 

Selection of Laboratory Tests and Creation of  
Risk Markers

We identified 23 blood chemistries and hematology counts from 

4 test panels (ie, the basic metabolic panel, lipid panel, liver func-

tion tests, complete blood counts) and extracted A1C, alanine 

aminotransferase (ALT), albumin, alkaline phosphatase (ALK), 

aspartate aminotransferase (AST), bicarbonate, blood urea nitrogen 

(BUN), calcium, chloride, creatinine, glucose, hematocrit, hemo-

globin, high-density lipoprotein cholesterol (HDL-C), low-density 

lipoprotein cholesterol (LDL-C), platelet, potassium, sodium, total 

bilirubin, total cholesterol, total protein, triglycerides, and white 

blood cell results from the EHR data. Our literature review suggested 

that these tests are commonly ordered in office-based clinical 

practices, and our study population confirmed this theory, as 49% 

had at least 1 result for any of the 23 tests in 2012. We extracted CPT 

codes for test orders from claims submitted to HealthPartners and 

confirmed that essentially all results for the tests of interest were 

present in the EHR data. We compared results with reference ranges 

for healthy persons,14 manually excluded implausible results that 

were extremely far outside the reference ranges, and selected the 

most recent results to create patient-level risk markers. Patient-

level annual costs were calculated from claims incurred in 2013.

We used a 3-step process to develop laboratory-based risk markers. 

First, we conducted a regression tree analysis for each of the 23 tests 

to determine result ranges that were prospectively associated with 

increased annual costs using the caret package in R software.15 A 

strategy of individually analyzing laboratory covariates has been 

used to discriminate the risk of inpatient mortality.16 We minimized 

the impact of high-cost claimants by truncating individual costs 

at $250,000, which was equivalent to the 99.9th percentile in the 

study population. Second, several regression tree analyses gener-

ated multiple result ranges, and we condensed them into ordinal 

“low” and “high” levels to create binary markers. High levels of risk 

consisted of low test results, high values, or both. To prevent model 

overfitting, we required the high-risk groups to contain at least 1% of 

patients who had results for a test. Third, we created binary markers 

for low and high risk levels. Tested patients had either a low- or a 

high-risk marker assigned to their test results. High risk indicated a 

potential for high cost in the future period; low risk indicated that a 

patient’s condition was nonsevere or under control or that the test was 

performed for diagnostic reasons. Patients who did not have tests had 

all markers set to 0 so that we were able to evaluate the joint impact 

of laboratory-based risk markers in the entire patient population.

TAKEAWAY POINTS

 › Laboratory tests that are frequently ordered by physicians in outpatient practices contain 
valuable data for individual risk assessment. 

 › Ranges of blood chemistries and hematology results define a set of model markers that 
have clinical face validity and potential utility for care management. 

 › Adding the laboratory-based markers to risk levels derived from claims, prescriptions, 
and enrollment data improves the prediction of individual cost, the prediction of inpatient 
admission, and the prospective identification of high-cost patients. 

 › For practices, a simple model that includes demographics and laboratory information may 
provide a basic tool to evaluate patient panels.
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Outcome Measures and Predictive Models

Our prospective outcome measures were individual total annual 

claims costs, presence of inpatient hospitalization, and high-risk 

patient status, defined as being among the top 5% of claimants 

in 2013. We developed 5 predictive models for these 3 outcomes.

The demographic model included age and gender only; the Charlson 

model included age, gender, and 17 morbidity categories from the CCI, 

which is widely used to predict high-cost patients.16 The ACG system 

contributed 3 predictive models; all included morbidity markers based 

on diagnoses, and 1 included morbidity markers that were derived 

from prescription data.17 We first combined the demographic variables 

with 32 Aggregated Diagnosis Groups (ADGs; ie, types of morbidity 

from the ACG system) into an ADG model. Other researchers have 

validated a similar ADG model for predicting mortality.18 Second, we 

implemented the ACG-Dx predictive model with age, gender, 24 selected 

ACGs, and 116 Expanded Diagnosis Clusters (EDCs) for the patient 

population.19 ACGs are mutually exclusive groups that are based on 

patterns of ADG morbidity types and have similar resource use; EDCs 

are clinical groupings of diseases based on ICD-9-CM and International 

Classification of Diseases, Tenth Revision, Clinical Modification codes. A 

patient may have multiple ADGs and EDCs. Third, we implemented 

an ACG-DxRx model that contained all markers from the Dx version 

and included 65 Rx-MGs (ie, morbidity types based on prescription 

data). ACG-PM predictive models have been validated for predicting 

high-risk patients and inpatient hospitalization.1,20

Statistical Analyses

We used the health system’s data to generate individual risk scores. The 

models were run with and without the laboratory markers included. 

Our objective was to evaluate the contribution of new laboratory 

markers to the performance of predictive models with different 

levels of complexity as indicated by the number of morbidity markers. 

We calibrated models for costs using ordinary least squares 

(OLS) and generalized linear regression and chose to report the 

coefficient of determination (R2) for OLS models. Models for 

inpatient hospitalization and high-risk outcomes were calibrated 

using logistic regression, and we computed sensitivity, specificity, 

area under the receiver operating characteristic curve (AUC), and 

integrated discrimination improvement (IDI) statistics to quantify 

the improvement in discriminatory performance due to laboratory 

markers. We included IDI because the original models that included 

ACG system variables showed high AUC values; therefore, meaningful 

improvements in discriminatory power might not be captured by 

measuring only AUC. The properties of the IDI statistic are well 

understood, and this statistic is increasingly used to evaluate 

markers that are introduced into predictive models.21,22

RESULTS
Characteristics of the Study Population

The study population consisted of 120,844 patients who had at least 

1 ambulatory care visit at a HealthPartners-owned clinic in 2012. The 

mean (SD) age was 37.6 (19.2) years, 20.6% were younger than 18 years, 

3.3% were 65 years or older, and 57.1% were women (Table 1). Almost 

all patients (99.9%) had at least 1 type of morbidity recorded, with an 

average (SD) of 5.9 (3.4) ADGs, and 20.0% had at least 1 comorbid condi-

tion that was included in the CCI. Mean (SD) patient total annual claims 

costs were $5732 ($20,208), and 5.1% were admitted to a hospital in 2013. 

We extracted test orders from all outpatient medical service 

claims and measured laboratory data completeness. A1C results 

were 92% complete; calcium results, 96% complete; and all other 

test results, more than 98% complete.

Risk Associated With Laboratory Results 

We determined whether any result ranges for the candidate tests 

were associated with increased costs in the year after the tests were 

performed. Our analysis indicated separations between “low-cost” and 

“high-cost” risk groups for 12 of the 23 tests. These 12 tests included 

sodium, chloride, bicarbonate, glucose, and calcium from the basic 

metabolic panel; total protein and albumin from the liver function 

tests; hemoglobin, hematocrit, and platelets from the complete 

blood count; and total cholesterol and LDL-C from the lipid panel. 

The other 11 laboratory tests—A1C, ALT, ALK, AST, BUN, creatinine, 

HDL-C, potassium, total bilirubin, triglycerides, and white blood 

cell results—did not show an association with low- or high-cost 

risk and were excluded from the predictive modeling.

High-risk group sizes ranged from 1% of patients with hematocrit 

results to 21% of patients with albumin results. The average costs 

in these 2 groups were $32,695 and $24,234, respectively. Other 

TABLE 1. Study Population Characteristics

Patient count 120,844

Age, years, mean (SD) 37.6 (19.2)

Age groups, years, %

<18 20.6

18-64 76.1

≥65 3.3

Female, % 57.1

CCI score, mean (SD) 0.26 (0.60)

Patients with any CCI comorbidities, % 20.0

ADG count, mean (SD) 5.9 (3.4)

Patients with any ADG morbidity types, % 99.9

Patients with ≥1 of 23 lab tests of interest, % 49.0

Total costs in 2013, mean (SD) $5732 ($20,208)

Patients with ≥1 inpatient admission in 2013, 
n (%)

6163 (5.1)

ADG indicates Aggregated Diagnosis Group (from the Johns Hopkins Adjusted 
Clinical Groups system); CCI, Charlson Comorbidity Index.
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high-risk groups showed similar increased average annual costs. 

The cost separation between high- and low-risk groups ranged from 

$4943 for LDL-C to $23,492 for hematocrit (Table 2).

Predictive Model Performance Improvement With 
Added Laboratory Markers

Laboratory markers increased the prospective R2 of the demographic 

model for costs more than 2-fold from 2.2% to 5.9%; the IDI measures 

for inpatient and top-cost claimant identification were 121% and 

188%, respectively (Table 3). For Charlson models, the R2 for cost 

increased from 10.3% to 11.4%, and the identification of inpatients 

and top-cost claimants, as measured by the IDIs, improved by 40% 

and 14%, respectively. 

Overall, ACG-PM models exhibited higher prospective R2 values 

and showed less improvement with added laboratory markers 

compared with the demographic and Charlson models. The ACG-Dx 

and ACG-DxRx models predicted 22.2% and 24.7% of cost variation, 

respectively. Laboratory markers added small improvements to 

predicting costs across all 3 ACG system models; the R2 improve-

ments ranged from 0.1% to 0.6%.

The lab-enhanced ADG model had an AUC of 0.820 and an IDI 

of 4.8% for the identification of top-cost claimants. Similarly, lab-

enhanced ACG-Dx and ACG-DxRx models had AUCs (IDIs) of 0.835 

(1.5%) and 0.847 (1.0%) for high-risk identification, respectively. 

For hospitalization predictions, the AUCs across lab-enhanced ACG 

system models ranged from 0.789 (ADG) to 0.799 (ACG-DxRx); IDIs 

ranged from 8.4% for the ADG model to 3.4% for the ACG-DxRx model. 

DISCUSSION
We developed high-cost risk markers using commonly ordered 

outpatient laboratory test results and evaluated how these markers 

improved individual predictions of healthcare costs, hospitalization, 

and high-risk status. This analysis extends previous research that 

used laboratory test results to predict clinical outcomes, such as 

mortality and hospital admission.3-8,16 We explored the potential 

value of these new commonly available clinical data sources for 

population-based predictive models as applied to care management. 

We transformed test results that were extracted from an outpatient 

EHR into risk markers that could be replicated in a health system; 

organizations should be able to derive risk thresholds that are 

similar to those used in this research. Our thresholds were outside 

the reference ranges for apparently healthy persons, although less 

extreme than those used in previous inpatient mortality models.22 

Among the basic metabolic panel, 5 of 8 candidate tests were 

associated with high-cost risk. Abnormalities in electrolytes (sodium, 

potassium, chloride, bicarbonate, BUN) can occur in patients with 

congestive heart failure and kidney disease, and both conditions are 

linked with higher costs.23,24 Although creatinine is used clinically 

to determine chronic kidney disease stages, we found an associa-

tion between creatinine and higher costs for less than 1% of tested 

patients, which was lower than our threshold. Hyperglycemia, as 

demonstrated by elevated glucose, was associated with increased cost 

risk, but A1C showed no association. Some tests that are commonly 

used to stage disease or guide treatment (eg, creatinine and A1C) 

TABLE 2. Ranges of Laboratory Values Associated With Low and High Annual Healthcare Cost

Test Units

Low Risk High Risk

Patients With TestRange (% of patients) Mean Costa Range (% of patients) Mean Costa

Basic Metabolic Panel

Sodium mmol/L ≥136.5 (95) $10,249 <136.5 (5) $16,801 25,142

Chloride mmol/L ≥98.5 (95) $10,586 <98.5 (5) $18,199 21,885

CO2 mmol/L 23.25-35.5 (94) $10,627 <23.25 or ≥35.5 (6) $17,175 21,797

Glucose mg/dL <113.5 (89) $16,935 ≥113.5 (11) $14,494 38,955

Calcium mg/dL ≥8.85 (88) $27,869 <8.85 (12) $18,531 18,674

Liver Function Tests

TP g/dL ≥6.55 (89) $13,486 <6.55 (11) $27,848 6903

Albumin g/dL ≥3.95 (79) $12,752 <3.95 (21) $24,243 7807

Complete Blood Count

Hgb g/dL ≥9.95 (98) $8740 <9.95 (2) $26,280 39,786

Hct % ≥30.85 (99) $9203 <30.85 (1) $32,695 34,515

Platelets 1000/mcL ≥136.5 (98) $9229 <136.5 (2) $21,475 34,610

Lipid Panel 

TC mg/dL ≥129.5 (95) $7051 <129.5 (5) $12,656 37,178

LDL-C mg/dL ≥75.5 (86) $6955 <75.5 (14) $11,898 36,060

CO2 indicates bicarbonate; Hct, hematocrit; Hgb, hemoglobin; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TP, total protein.
aCosts were calculated from claims incurred during the calendar year after the laboratory test was performed.
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were not predictive of prospective cost in our analysis. A previous 

analysis found that these tests were associated with 5-year costs 

among patients with diabetes11; our results may be accounted for by 

the 2-year duration of this study. 

Among tests from the liver function test panel, 2 of 6 tests were 

associated with high-cost risk. Low levels of total protein and 

albumin are linked with liver disease and malnutrition.25 Three 

components from the complete blood count were associated with 

high risk in the subsequent year. Low hemoglobin and hematocrit 

values indicate anemia, and low values of platelets can be diagnostic 

of thrombocytopenia. Among the 4 tests included in the lipid panel, 

low total cholesterol and LDL-C levels were associated with high 

risk. Several conditions, including cancer, may contribute to low 

cholesterol levels.26 We did not identify high total cholesterol and 

LDL-C levels, 2 clinical risk factors for coronary artery disease,27 as 

ranges that contribute to high-cost risk. Patients who had lipid tests 

may have already been treated with statins, so they had decreased risk.

Our second objective was to examine whether laboratory-based 

risk markers improved predictive models for total healthcare costs, 

top-cost claimants, and inpatient hospitalization. We explored the 

added value to models that varied in complexity in terms of the number 

and scope of morbidity markers, ranging from a demographic-only 

model to a Charlson model with 17 morbidity categories to 3 complex 

models from the ACG system. This approach enabled us to examine 

the impact of laboratory-based risk markers across a range of models 

and inform organizations that may have access to sources of data 

with different limitations (eg, stand-alone laboratory centers may not 

have the complete clinical picture of referred patients). In all cases, 

laboratory-based markers improved the prediction of costs and the 

identification of high-cost claimants and patients with inpatient 

admission compared with original models. Model performance 

improved greatly when laboratory risk markers were added to the 

demographic and Charlson models and modestly when laboratory-

based markers were added to ACG-Dx and ACG-DxRx models with large 

TABLE 3. Comparison of Model Performance With and Without Enhancement With Laboratory-Based Risk Markers: Predicting 
Future Total Healthcare Costs and Prospectively Identifying Inpatient Utilization and Top 5% Cost Claimantsa

Model

Total 
Costs Inpatient Identification Top-Cost Claimant Identification

R2, %
(95% CI)

Sensitivity, % (95% CI)
Specificity, % (95% CI)

AUC 
(95% CI)

IDI, % 
(95% CI)

Sensitivity, % (95% CI)
Specificity, % (95% CI)

AUC 
(95% CI)

IDI, % 
(95% CI)

Demographic
2.2

(1.9-2.6)
6.52 (6.30-6.82)

97.88 (97.85-97.92)
0.661

(0.657-0.666)
–

8.22 (8.03-8.55)
96.92 (96.88-96.97)

0.659
(0.655-0.662)

–

Lab-enhanced 
demographic

5.9
(5.1-7.1)

20.71 (20.29-21.37)
95.82 (95.65-95.87)

0.713
(0.710-0.715)

121.1
(114.2-124.9)

19.86 (19.58-20.16)
95.78 (95.77-95.79)

0.722
(0.718-0.725)

187.7
(177.8-195.5)

Charlsonb 10.3
(8.8-12.3)

16.56 (16.25-16.98)
95.62 (95.57-95.68)

0.704
(0.700-0.708)

–
25.82 (25.35-26.14)
96.10 (96.02-96.17)

0.732
(0.729-0.735)

–

Lab-enhanced 
Charlsonb

11.4
(9.9-13.9)

22.67 (22.14-23.59)
95.90 (95.68-96.00)

0.729
(0.726-0.731)

40.4
(37.9-43.4)

26.53 (25.97-27.15)
96.13 (96.10-96.17)

0.755
(0.751-0.757)

14.2
(13.0-15.1)

ADGc 13.4
(12.6-14.2)

31.00 (30.39-31.68)
96.39 (96.35-96.43)

0.789
(0.786-0.791)

–
29.19 (28.66-29.60)
96.27 (96.25-96.30)

0.817
(0.815-0.819)

–

Lab-enhanced 
ADGc

14.0
(13.1-15.0)

31.98 (31.47-32.52)
96.44 (96.40-96.48)

0.789
(0.787-0.792)

8.4
(7.4-8.9)

30.29 (29.92-30.63)
96.33 (96.31-96.35)

0.820
(0.817-0.822)

4.8
(4.1-5.2)

ACG-Dxd 22.1
(20.6-24.2)

35.34 (34.96-35.91)
96.62 (96.58-96.65)

0.797
(0.794-0.800)

–
36.41 (35.98-36.82)
96.65 (96.63-96.68)

0.834
(0.831-0.836)

–

Lab-enhanced 
ACG-Dxd

22.2
(20.7-24.4)

35.68 (35.25-36.65)
96.64 (96.61-96.67)

0.798
(0.796-0.801)

3.7
(3.3-4.0)

36.62 (36.06-36.99)
96.66 (96.64-96.68)

0.835
(0.833-0.837)

1.5
(1.3-1.7)

ACG-DxRxe 24.6
(23.0-26.4)

35.68 (35.33-36.40)
96.64 (96.61-96.68)

0.797
(0.794-0.801)

–
38.88 (38.11-39.49)
96.78 (96.74-96.82)

0.846
(0.844-0.848)

–

Lab-enhanced 
ACG-DxRxe

24.7
(23.1-26.5)

35.85 (35.42-36.25)
96.65 (96.61-96.68)

0.799
(0.796-0.802)

3.4
(3.2-3.8)

39.09 (38.69-39.72)
96.79 (96.77-96.83)

0.847
(0.845-0.849)

1.0
(0.8-1.2)

ACG indicates Adjusted Clinical Group; ADG, Aggregated Diagnosis Group; AUC, area under the receiver operating characteristic curve; DS, discrimination slope; 
EDC, expanded diagnosis cluster; IDI, integrated discrimination improvement; IP, integrated 1-specificity; IS, integrated sensitivity. 
aAll models included age and gender and are fitted to the health system’s data. Costs were truncated at $250,000 (ie, the 99.9th percentile of annual claimant 
costs). The number of patients who had all-cause acute care inpatient hospitalizations was 6129 (5.1%). We used custom regression weights to generate individual 
risk scores. Lab-enhanced versions included laboratory-based risk markers from Table 2. We used the following method to calculate IDI: (1) calculate IS, which is 
the mean predicted probability in the group of patients with hospitalization; (2) calculate IP, which is the mean predicted probability in the group of patients without 
hospitalization; and (3) calculate DS as IS – IP for lab-enhanced models and corresponding base models, and (4) calculate IDI as (DS (+laboratory markers) – DS) / DS. 
bCharlson models contained 17 Charlson Comorbidity Index morbidity categories. 
cADG models contained 32 ADGs from the ACG system. 
dACG-Dx models from the ACG system included ACGs and EDCs.
eACG-DxRx models from the ACG system included ACGs, EDCs, and Rx-Defined Morbidity Groups (Rx-MGs).
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sets of morbidity markers derived from diagnoses and medication 

data found in claims or EHRs. Importantly, for health systems or 

healthcare practices with limited resources for predictive modeling, 

our results demonstrate that a simple model with laboratory markers 

may provide a tool to evaluate individuals and patient panels.

Limitations

Our research has several limitations, including that (1) the develop-

ment of laboratory-based risk markers could be refined by integrating 

patient characteristics (ie, age and sex) and multiple tests in 

regression tree analyses; (2) our study population contained mainly 

working-age insured patients; therefore, our exploratory research 

should be replicated in other populations (eg, elderly patients); 

(3) temporal changes in test results could contain additional risk 

information for patients who have multiple laboratory tests in a year; 

(4) additional risk information could be gathered from tests that are 

less frequently ordered in outpatient settings, including tests that 

would inform about diagnoses that are potentially underreported 

in EHRs and claims; and (5) the model fit could conceivably be 

improved somewhat with alternative statistical techniques.

CONCLUSIONS
We explored outpatient laboratory risk markers in a large population 

of insured patients. Although our results with several lab-enhanced 

predictive models are modest, this work offers a promising perspec-

tive for independent laboratory test providers and care delivery 

systems that have limited morbidity data available for high-risk 

patient identification. More generally, organizations that apply 

strategies for high-risk case finding may want to consider adding 

laboratory-based risk markers to their models. These added clinical 

data may prove useful for a range of applications in the population 

health surveillance and care management domains. n
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