Pricing of Monoclonal Antibody Therapies: Higher If Used for Cancer?

Inmaculada Hernandez, PharmD, PhD; Samuel W. Bott, BS; Anish S. Patel, BS; Collin G. Wolf, BS; Alexa R. Hospodar, BS; Shivani Sampathkumar, BS; and William H. Shrank, MD, MSHS

he unsustainable rising prices of specialty drugs have prompted a debate about how medications are priced. Manufacturers contend that high prices are essential to recoup research and development costs; however, a growing societal chorus believes that manufacturers are maximizing profits at the expense of patients and the healthcare system. Concerns about drug pricing policies are amplified in oncology and hematology,¹⁻⁶ where vulnerable patients and their families often have unrealistic expectations about the value of treatment.⁷ Of note, the mean price of a cancer drug has doubled in the last decade, and targeted therapies represent an important driver of this increase.^{1,7,8} In this study, we compared the annual price of monoclonal antibody (mAb) therapies approved in the last 20 years by the FDA across disease states. Specifically, we evaluated whether the prices were higher for mAbs used in cancer than for those used in other disease states. We limited our analysis to mAbs to minimize the potential impact of varying production costs among different types of molecules.

METHODS

Study Design

We identified all indications approved by the FDA for mAbs from 1997 to 2016 using the FDA website.⁹ After excluding radioactive mAb-indication combinations (n = 1), antidotes (n = 1), and those approved for diagnostic purposes (n = 3), withdrawn from the market by 2016 (n = 2), or not available to the public for other reasons (n=2), our sample included 107 unique mAb-indication combinations (eAppendix Table 1 [eAppendices available at ajmc.com]). From the FDA-approved label of each mAb, we extracted the recommended dose for each indication, chemical structure (whole mAb, antigenbinding fragment antibody, or other), source (human, humanized, chimeric, or murine), and route of administration (subcutaneous, intravenous, intramuscular, or intraocular). We categorized indications into 5 disease states: oncology or hematology, cardiology

ABSTRACT

OBJECTIVES: The rising prices of specialty drugs have prompted a debate about how medications are priced. With the average price of cancer drugs doubling in the last decade, the unsustainability of drug prices is especially concerning in oncology and hematology. The objective of this study was to compare the prices of monoclonal antibodies (mAbs) approved in the last 20 years by the FDA across disease states.

STUDY DESIGN: We identified all indications approved by the FDA for mAbs from 1997 to 2016 and calculated the annual price of 1-year treatment for each mAb-indication combination as the product of the US average wholesale price per milligram and the recommended dose.

METHODS: We compared the annual price of treatment with each mAb across disease states using generalized linear models with gamma distribution and log link, controlling for route of administration, chemical structure, source, and time since FDA approval.

RESULTS: The average annual price of a mAb was \$96,731, exceeding \$100,000 for 34 mAb-indication combinations. Oncology and hematology mAbs represented 40% of the mAb-indication combinations approved, yet they accounted for more than 85% of those priced \$100,000 or higher. After adjusting for factors that can affect production costs, the annual price of oncology or hematology mAbs was \$149,622 higher than those used in cardiovascular or metabolic disorders; \$98,981 higher than in immunology; \$128,856 higher than in infectious diseases or allergy; and \$106,830 higher than in ophthalmology (all *P* <.001).

CONCLUSIONS: The annual price of mAb therapies is about \$100,000 higher in oncology and hematology than in other disease states.

Am J Manag Care. 2018;24(2):109-112

TAKEAWAY POINTS

- The average price of a cancer drug has doubled in the last decade, and targeted therapies represent an important driver of that increase.
- > We identified all monoclonal antibody (mAb) therapies approved by the FDA in the last 20 years and compared their annual price across disease states.
- Oncology and hematology mAbs represented 40% of the mAb-indication combinations approved, yet they accounted for more than 85% of those priced \$100,000 or higher. With a median annual price of \$142,833, the annual price of mAbs used in oncology or hematology was about \$100,000 higher than those used in other disease states.

FIGURE. Annual Price of Treatment for mAb-Indications

or endocrinology, immunology, infectious diseases or allergy, and ophthalmology. We further classified oncology and hematology indications into 7 categories: bone cancer; breast cancer; gastrointestinal cancer; lung, head, or neck cancer; melanoma; hematologic malignancies and hematologic disorders; and other types of cancer, which included glioblastoma, metastatic renal cell carcinoma, urothelial carcinoma, and neuroblastoma (details in **Figure**).

Endpoints

We extracted the US average wholesale price per milligram as of January 2017 from UpToDate¹⁰ and calculated the annual price of treatment for a standard patient—a 70-kg/1.80-m adult, a 40-kg patient in the case of mAb–indication combinations approved for juvenile conditions (ie, with childhood onset), or a 4.5-kg infant for mAb–indication combinations used in pediatrics (ie, for diseases that occur in the first weeks of life)—for each mAb–indication combination as the product of the recommended dose for 1 year of treatment and the price per milligram. We used lower-bound values for the weight of a standard patient because dosing is based on weight only for some mAbs, so using a higher value would increase the probability of type I error when comparing prices of mAbs that require dose adjustment with those that do not.

Statistical Analysis

We constructed generalized linear models with gamma distribution and log link to evaluate how the annual price of treatment differed across disease states. We controlled for route of administration, chemical structure, time since FDA approval, and source, all of which can affect production costs.¹¹ We followed the same methodology to examine how pricing of oncology and hematology mAb-indication combinations differed by type of cancer or hematologic disorder. All analyses were conducted at the mAb-indication combination level, meaning that for mAbs approved for more than 1 indication, each indication counted as a separate observation (details in **Table**).

RESULTS

Our sample included 107 mAb–indication combinations, with a mean (median) annual price of \$96,731 (\$58,968). The annual price of treatment exceeded \$100,000 for 34 (32%) mAb–indication combinations and was highest for 2 indications of eculizumab (\$800,280 for atypical hemolytic uremic syndrome and \$592,654 for paroxysmal nocturnal hemoglobinuria) and lowest for denosumab, which is indicated for fracture prevention (\$2465) (eAppendix Table 1). The annual price of treatment was highest for mAbs

Cardio/endoc indicates cardiology or endocrinology; ID, infectious diseases; GI, gastrointestinal; mAb, monoclonal antibody; onco/hemato, oncology or hematology. ^aCardiology and endocrinology included mAbs approved for the treatment of atherosclerotic cardiovascular disease, hypercholesterolemia, and metabolic bone disease; immunology included mAbs approved for autoimmune disorders and prevention of organ transplant rejection; and hematology included mAbs approved for solved mAbs approved for autoimmune disorders and prevention of organ transplant rejection; and hematologic disorders, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Overlapped bars show the median and interquartile range of the annual price of treatment.

Monoclonal Antibody Pricing by Disease State

used in oncology or hematology (median, \$142,833; interquartile range [IQR], \$73,920-\$164,291], followed by immunology (median, \$53,969; IQR, \$28,056-\$68,770) (Figure and **eAppendix Table 2**). Of 43 oncology and hematology mAb–indication combinations, 29 (67%) were priced higher than \$100,000 per year of treatment. Although oncology and hematology mAb–indication combinations represented only 40% of all mAb–indication combinations approved in the last 20 years (43 of 107), they accounted for more than 85% of those priced \$100,000 or higher (29 of 34). Within oncology and hematology indications, the annual price of treatment was highest for mAbs indicated for types of cancer delineated as "other," which included glioblastoma, metastatic renal cell carcinoma, urothelial carcinoma, and neuroblastoma (median, \$167,152; IQR, \$158,456-\$230,225), followed by lung, head, or neck cancer (median, \$163,746; IQR, \$162,086-\$181,417).

After adjusting for route of administration, source, chemical structure, and time since FDA approval, the annual price of oncology or hematology mAbs was \$149,622 higher than those used in cardiovascular or metabolic disorders; \$98,981 higher than in immunology; \$128,856 higher than in infectious diseases or allergy; and \$106,830 higher than in ophthalmology (all P <.001) (Table). Other than disease state, the chemical structure of a mAb was the only factor significantly associated with pricing. In subgroup analysis, we found no significant differences in prices of mAbs by type of cancer or hematologic disorder, which was probably due to the small sample size of each group, as well as the large price variability of hematology mAbs.

DISCUSSION

Our analysis is the first to compare the price of mAbs approved by the FDA in the last 20 years across disease states. Our results document the high prices of this type of medication; with an average price of \$96,731, the annual price of treatment exceeded \$100,000 for 32% of 107 mAb–indication combinations approved by the FDA between 1997 and 2016. Oncology and hematology mAbs represented 40% of the combinations approved, yet they accounted for more than 85% of those priced \$100,000 or higher. After adjusting for factors that can affect production costs, we found that mAb therapies approved for the treatment of cancer and hematologic disorders are around \$100,000 per year of treatment more expensive than mAbs used in other disease states.

Higher prices for mAbs used in oncology and hematology may be explained by multiple factors. First, in order to recover development costs, manufacturers set higher prices for drugs used for a short period of time or for drugs indicated in rare conditions. This likely explains why the 2 most expensive mAb–indication combinations were those with eculizumab, originally approved for paroxysmal nocturnal hemoglobinuria, which affects only 5000 patients in the United States.¹² In addition, duration of treatment is usually **TABLE.** Adjusted Differences in the Annual Price of Treatment of Drug Indications Approved by the FDA for mAbs in 1997-2016^a

	Annual Price of Treatment (\$)			
All Drug Indications	Difference in Means	Р		
Indication: disease state				
Oncology/hematology	Ref			
Cardiology/endocrinology ^c	-149,622	<.001		
lmmunology⁴	-98,981	<.001		
Infectious diseases/allergy	-128,856	<.001		
Ophthalmology	-106,830	<.001		
Route of administration				
Intravenous	Ref			
Subcutaneous	26,688	.536		
Structure				
Whole mAb	Ref			
Antigen-binding fragment	-25,610	.324		
Other ^e	363,636	.006		
Source				
Human	Ref			
Humanized	4621	.879		
Chimeric or murine	-55,363	.065		
Time since FDA approval, per year ^f	-2914	.178		

(continued)

shorter in cancer, where drugs are commonly used for weeks or months, than in other disease states where drugs may be used for years. Second, the therapeutic arsenal available for the treatment of some types of cancer and hematologic disorders is narrower than in other disease states, which makes patients and providers less responsive to the prices of these medications. Third, payers have limited levers to restrict access to, and hence lower prices for, cancer drugs.^{6,13} This is because Medicare Part D plans are required to include all cancer drugs in their formularies and some states also mandate the coverage of cancer drugs by private insurers.^{6,14}

Limitations

This study was designed to describe patterns in pricing and did not aim to assess the process manufacturers apply when determining the asking price for their medications. Moreover, our study did not attempt to assess the value of the agents studied in terms of cost-effectiveness or clinical outcomes. In addition, our study did not evaluate the pricing of targeted therapies other than mAbs, and we used average wholesale prices, which do not account for manufacturers' rebates. Nevertheless, this does not invalidate our results because the objective of our study was not to estimate net drug prices after discounts but to compare prices across disease states, and rebates should not differ across disease states.

TRENDS FROM THE FIELD

TABLE. *(continued)* Adjusted Differences in the Annual Price of Treatment of Drug Indications Approved by the FDA for mAbs in 1997-2016^a

Oncology/Hematology	Annual Price of Treatment (\$)				
mAb-Indication Combinations	Difference in Means	Ρ			
Indication: type of cancer					
Hematology ⁹	Ref				
Bone	-140,705	.055			
Breast	-102,707	.196			
Gastrointestinal	-49,022	.532			
Lung, head, or neck	-28,544	.704			
Melanoma	-51,267	.499			
Other ^h	12,146	.890			
Route of administration					
Intravenous	Ref				
Subcutaneous	-79,419	.069			
Structure					
Whole mAb	Ref				
Other ^e	279,088	.022			
Source					
Human	Ref				
Humanized	3935	.923			
Chimeric or murine	-52,042	.210			
Time since FDA approval, per year	-414	.930			

mAb indicates monoclonal antibody; ref, reference group.

^aResults show marginal effects of each covariate at the median level and were obtained from generalized linear models with gamma distribution and log link, which included all covariates listed here. All analyses were conducted at the mAb-indication combination level because the outcome variable (the annual price of treatment) was calculated as the product of the price per milligram and the standard dose for a 1-year treatment for each indication, which varies across indications (eAppendix Table 1). For this reason, the units of observation (mAb-indication combinations) were independent data. **Bold** denotes statistically significant results at P < .05.

^bOncology and hematology indications included solid tumors, hematologic malignancies, and other hematologic disorders, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.

^cCardiology and endocrinology indications included atherosclerotic cardiovascular disease, hypercholesterolemia, and metabolic bone disease. ^dImmunology indications included autoimmune disorders and prevention of

organ transplant rejection.

•Other structures included bi-specific T-cell engagers and antibody-drug conjugates.

⁴Time since FDA approval was calculated as the difference between the date of first approval of each molecule and December 31, 2016.

 Hematology indications included hematologic malignancies and other hematologic disorders, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.

^hOther types of cancer included glioblastoma, metastatic renal cell carcinoma, urothelial carcinoma, and neuroblastoma.

CONCLUSIONS

Despite these limitations, our study has important implications. At a time when healthcare resources are constrained and threaten state and federal budgets, the rapidly rising costs of prescription drugs, specialty drugs in particular, will continue to garner media and policy attention.⁷ In the absence of some type of value framework where prices are justified by the value they bring to specific patients or the population, attention to drug pricing is likely to grow. There may be a unique opportunity for clinical experts and manufacturers to collaborate and redefine how the value of pharmaceuticals is measured and fundamentally shift the way manufacturers are reimbursed for high-cost medications like mAbs.^{5,15-17}

Author Affiliations: Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh (IH, SWB, ASP, CGW, ARH, SS), Pittsburgh, PA; Insurance Division, University of Pittsburgh Medical Center (WHS), Pittsburgh, PA.

Source of Funding: University of Pittsburgh internal funds.

Author Disclosures: Mr Bott owns stock in Merck, Incyte, and Johnson & Johnson. Mr Wolf is employed as an intern by Bristol-Myers Squibb. Dr Shrank is employed in the Insurance Division, University of Pittsburgh Medical Center, and has received consulting fees from Johnson & Johnson. The remaining authors report no relationship or financial interest with any entity that would pose a conflict of interest with the subject matter of this article.

Authorship Information: Concept and design (IH, SWB, ASP, CGW, ARH, SS, WHS); acquisition of data (SWB, ASP, CGW, ARH, SS, WHS); analysis and interpretation of data (IH, SWB, ASP, ARH, WHS); drafting of the manuscript (IH, SWB, CGW, ARH, SS, WHS); critical revision of the manuscript for important intellectual content (ARH, WHS); statistical analysis (IH); obtaining funding (IH); and supervision (IH, WHS).

Address Correspondence to: Inmaculada Hernandez, PharmD, PhD, Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA 15261. Email: inh3@pitt.edu.

REFERENCES

 Kantarjian HM, Fojo T, Mathisen M, Zwelling LA. Cancer drugs in the United States: Justum Pretium—the just price [erratum in J Clin Oncol. 2015;33(30):3523. doi: 10.1200/JCO.2015.64.8527]. J Clin Oncol. 2013;31(28):3600-3604. doi: 10.1200/JCO.2013.49.1845.

 Kantarjian H, Steensma D, Rius Sanjuan J, Elshaug A, Light D. High cancer drug prices in the United States: reasons and proposed solutions. *J Oncol Pract.* 2014;10(4):e208-e211. doi: 10.1200/JOP.2013.001351.
Light DW, Kantarjian H. Market spiral pricing of cancer drugs. *Cancer.* 2013;119(22):3900-3902. doi: 10.1002/cncr.28321.

 Chhatwal J, Mathisen M, Kantarjian H. Are high drug prices for hematologic malignancies justified? a critical analysis. *Cancer.* 2015;121(19):3372-3379. doi: 10.1002/cncr.29512.

 Boniva [prescribing information]. South San Francisco, CA: Genentech, Inc; 2013. accessdata.fda.gov/ drugsattda_docs/label/2013/0214555014s015lbl.pdf. Updated April 2013. Accessed March 9, 2014.
Bach PB. Limits on Medicare's ability to control rising spending on cancer drugs [erratum in N Engl J Med. 2009;360(9):944. doi: 10.1056/NEJMx090006]. N Engl J Med. 2009;360(6):626-633. doi: 10.1056/NEJMhpr0807774.

 Vivot A, Jacot J, Zeitoun JD, Ravaud P, Crequit P, Porcher R. Clinical benefit, price and approval characteristics of FDA-approved new drugs for treating advanced solid cancer, 2000-2015. *Ann Oncol.* 2017;28(5):1111-1116. doi: 10.1093/annonc/mdx053.

 Shih YC, Smieliauskas F, Geynisman DM, Kelly RJ, Smith TJ. Trends in the cost and use of targeted cancer therapies for the privately insured nonelderly: 2001 to 2011. *J Clin Oncol.* 2015;33(19):2190-2196. doi: 10.1200/jco.2014.58.2320.

9. US Food and Drug Administration website. fda.gov. Accessed February 9, 2017.

10. UpToDate website. uptodate.com. Accessed February 9, 2017.

11. Kelley B. Industrialization of mAb production technology: the bioprocessing industry at a crossroads. MAbs. 2009;1(5):443-452.

 Hill A, Platts PJ, Smith A, et al. The incidence and prevalence of paroxysmal nocturnal haemoglobinuria (PNH) and survival of patients in Yorkshire. *Blood.* 2006;108(11):985. bloodjournal.org/content/108/11/985. Published 2006. Accessed March 1, 2017.

13. Ramsey SD, Lyman GH, Bangs R. Addressing skyrocketing cancer drug prices comes with tradeoffs: pick your poison. *JAMA Oncol.* 2016;2(4):425-426. doi: 10.1001/jamaoncol.2015.5813.

14. Medicare Prescription Drug Benefit Manual: chapter 6—Part D drugs and formulary requirements. CMS website. cms.gov/Medicare/Prescription-Drug-Coverage/PrescriptionDrugCovContra/Downloads/Part-D-Benefits-Manual-Chapter-6.pdf. Updated January 15, 2016. Accessed April 19, 2017.

15. Brennan T, Shrank W. New expensive treatments for hepatitis C infection. *JAMA*. 2014;312[6]:593-594. doi: 10.1001/jama.2014.8897.

 Bach PB, Pearson SD. Payer and policy maker steps to support value-based pricing for drugs. JAMA. 2015;314(23):2503-2504. doi: 10.1001/jama.2015.16843.

17. Pfister DG. The just price of cancer drugs and the growing cost of cancer care: oncologists need to be part of the solution. *J Clin Oncol.* 2013;31(28):3487-3489. doi: 10.1200/jco.2013.50.3466.

Full text and PDF at www.ajmc.com

Generic Name	Brand Name	Туре	Source	Target	Indication	Disease State	Route of Administration	FDA Approval Date	Price per mg (\$)	Annual Price Treatment (\$)
Rituximab	Rituxan	mab	Chimeric	CD20	Non-Hodgkin lymphoma	Oncology/ Hematology	IV	11/26/1997	9.64	52,056
Rituximab	Rituxan	mab	Chimeric	CD20	Chronic lymphocytic leukemia	Oncology/ Hematology	IV	11/26/1997	9.64	49,887
Rituximab	Rituxan	mab	Chimeric	CD20	Rheumatoid arthritis	Immunology	IV	11/26/1997	9.64	38,560
Rituximab	Rituxan	mab	Chimeric	CD20	Granulomatosis with polyangiitis and microscopic polyangiitis	Immunology	IV	11/26/1997	9.64	26,028
Basiliximab	Simulect	mab	Chimeric	CD25	Prevention of organ transplant rejections in renal transplantation	Immunology	IV	5/12/1998	194.00	7760
Palivizumab	Synagis	mab	Humanized	Respiratory syncytial virus	Prevention) of respiratory syncytial virus disease	ID/Allergy	Intramuscular	6/19/1998	35.25	11,897
Infliximab	Remicade	mab	Chimeric	TNF-α	Ankylosing Spondylitis	Immunology	IV	8/24/1998	13.36	37,408
Infliximab	Remicade	mab	Chimeric	TNF-α	Crohn's disease	Immunology	IV	8/24/1998	13.36	28,056
Infliximab	Remicade	mab	Chimeric	TNF-α	Pediatric Crohn's disease	Immunology	IV	8/24/1998	13.36	16,032
Infliximab	Remicade	mab	Chimeric	TNF-α	Psoriatic arthritis	Immunology	IV	8/24/1998	13.36	28,056
Infliximab	Remicade	mab	Chimeric	TNF-α	Rheumatoid arthritis	Immunology	IV	8/24/1998	13.36	16,834
Infliximab	Remicade	mab	Chimeric	TNF-α	Ulcerative colitis	Immunology	IV	8/24/1998	13.36	28,056
Infliximab	Remicade	mab	Chimeric	TNF-α	Pediatric ulcerative colitis	Immunology	IV	8/24/1998	13.36	16,032
Trastuzumab	Herceptin	mab	Humanized	HER2/neu	HER2 overexpressing breast cancer	Oncology/ Hematology	IV	9/25/1998	11.07	82,139
Trastuzumab	Herceptin	mab	Humanized	HER2/neu	HER2 overexpressing gastric cancer	Oncology/ Hematology	IV	9/25/1998	11.07	66,641
Daclizumab	Zenapax	mab	Humanized	CD25	Prevention of organ transplant rejections	Immunology	SQ	12/10/1998	54.67	19,135
Adalimumab	Humira	mab	Human	TNF-α	Rheumatoid arthritis	Immunology	SQ	12/31/2002	61.46	63,914
Adalimumab	Humira	mab	Human	TNF-α	Crohn's disease	Immunology	SQ	12/31/2002	61.46	63,914
Adalimumab	Humira	mab	Human	TNF-α	Plaque psoriasis	Immunology	SQ	12/31/2002	61.46	63,914
Adalimumab	Humira	mab	Human	TNF-α	Psoriatic arthritis	Immunology	SQ	12/31/2002	61.46	63,914
Adalimumab	Humira	mab	Human	TNF-α	Ankylosing spondylitis	Immunology	SQ	12/31/2002	61.46	63,914
Adalimumab	Humira	mab	Human	TNF-α	Juvenile idiopathic arthritis	Immunology	SQ	12/31/2002	61.46	63,914
Omalizumab	Xolair	mab	Humanized	IgE Fc region	Allergic asthma	ID/Allergy	SQ	6/20/2003	7.87	28,922
Omalizumab	Xolair	mab	Humanized	IgE Fc region	Chronic idiopathic urticaria	ID/Allergy	SQ	6/20/2003	7.87	30,693
eAppendix Tab	le 1 continue	ed								

eAppendix Table 1. Drug–Indications Approved by the FDA for Monoclonal Antibodies in 1997-2016^a

Generic Name	Brand	Туре	Source	Target	Indication	Therapeutic	Route of	FDA	Price per	Price Annual
	Name					Area of	Administration	Approval	mg (\$)	Treatment (\$)
						Indication		Date		
Bevacizumab	Avastin	mab	Humanized	VEGF-A	Metastatic colorectal	Oncology/	IV	2/26/2004	8.71	158,456
		1			cancer	Hematology			0.51	155 400
Bevacızumab	Avastin	mab	Humanized	VEGF-A	Non-small cell lung	Oncology/	IV	2/26/2004	8.71	155,408
Daviasimumah	Arroatia		Humanimad	VECE A	cancer	Hematology	117	2/26/2004	0.71	150 456
Bevacizumab	Avastin	mab	Humanized	VEGF-A	Metastatic breast cancer	Uncology/	1V	2/26/2004	8.71	158,456
Bevacizumah	Avastin	mah	Humanized	VEGE-A	Glioblastoma	Oncology	IV	2/26/2004	8 71	158 / 56
Devaeizumao	Avastin	mao	munianized	VEOP-A	Gilobiastollia	Hematology	1 V	2/20/2004	0.71	156,450
Bevacizumab	Avastin	mab	Humanized	VEGF-A	Metastatic renal cell	Oncology/	IV	2/26/2004	8.71	158.456
				,	carcinoma	Hematology		_/_ 0/_ 0 0 0		
Ranibizumab	Lucentis	Fab	Humanized	VEGF-A	Age-related macular	Ophthalmology	Intraocular	6/30/2006	4680.00	28,080
					degeneration					
Ranibizumab	Lucentis	Fab	Humanized	VEGF-A	Macular edema following	Ophthalmology	Intraocular	6/30/2006	4680.00	28,080
					retinal vein occlusion					
Ranibizumab	Lucentis	Fab	Humanized	VEGF-A	Diabetic macular edema	Ophthalmology	Intraocular	6/30/2006	4680.00	16,848
Ranibizumab	Lucentis	Fab	Humanized	VEGF-A	Myopic choroidal	Ophthalmology	Intraocular	6/30/2006	4680.00	7020
D :/ 1	T 7 (11)	1		ECED	neovascularization		117	0/07/2004	12.00	1 40 004
Panitumumab	Vectibix	mab	Human	EGFR	Metastatic colorectal	Oncology/	IV	9/2//2006	13.08	142,834
Foulizumah	Soliria	mah	Humanizad	C 5	Cancer Derovusmal noaturnal	Opeology	IV	2/16/2007	25.65	502 654
Ecultzulliau	501115	mau	munianizeu	C-5	hemoglobinuria	Hematology	1 V	5/10/2007	23.03	392,034
Eculizumab	Soliris	mab	Humanized	C-5	Atypical hemolytic	Oncology/	IV	3/16/2007	25.65	800 280
Edunzaniao	Sound	muo	Tumumzou	0.0	uremic syndrome	Hematology	1,	5/10/2007	20.00	000,200
Certolizumab	Cimzia	Fab	Humanized	TNF-α	Crohn's disease	Immunology	SQ	4/22/2008	10.53	58,968
pegol						0,5				,
Certolizumab	Cimzia	Fab	Humanized	TNF-α	Psoriatic arthritis	Immunology	SQ	4/22/2008	10.53	58,968
pegol										
Certolizumab	Cimzia	Fab	Humanized	TNF-α	Ankylosing spondylitis	Immunology	SQ	4/22/2008	10.53	58,968
pegol	~						~ ~			
Golimumab	Simponi	mab	Human	TNF-α	Psoriatic arthritis	Immunology	SQ	4/24/2009	52.59	31,554
Golimumab	Simponi	mab	Human	TNF-α TNF	Rheumatoid arthritis	Immunology	SQ	4/24/2009	52.59	31,554
Golimumab	Simponi	mab	Human	$\frac{1 \text{ NF} - \alpha}{1 \text{ III}}$	Ulcerative colitis	Immunology	<u>SQ</u>	4/24/2009	52.59	/3,626
Canakinumad	maris	mab	Human	1L-1	periodic syndromes	Immunology	SQ	6/1//2009	107.05	90,327
Canakinumah	Ilaris	mah	Human	II _1	Tumor necrosis factor	Immunology	50	6/17/2009	107.03	192 654
Canakinumao	mans	mao	Tuman	112-1	receptor associated	minunology	50	0/1//2007	107.05	172,054
					periodic syndrome					
Canakinumah	Ilaris	mab	Human	II1	Familial Mediterranean	Immunology	SO	6/17/2009	107.03	192,654
Culturinu					fever		~~	0.1,12009	10,.00	
Canakinumab	Ilaris	mab	Human	IL-1	Systemic juvenile	Immunology	SQ	6/17/2009	107.03	205,498
					idiopathic arthritis		`			,
eAppendix Tabl	e 1 continue	d								

Generic Name	Brand Name	Туре	Source	Target	Indication	Therapeutic Area of	Route of Administration	FDA Approval	Price per mg (\$)	Price Annual Treatment (\$)
	1 vanie					Indication	1 tullingti atton	Date	μης (ψ)	Treatment (\$)
Ustekinumab	Stelara	mab	Human	IL-12, IL-23	Psoriatic arthritis	Immunology	SQ	9/25/2009	235.74	42,433
Ofatumumab	Arzerra	mab	Human	CD20	Chronic lymphocytic leukemia	Oncology/ Hematology	IV	10/26/2009	6.25	139,375
Tocilizumab	Actemra	mab	Humanized	IL-6 receptor	Rheumatoid arthritis	Immunology	IV	1/8/2010	5.43	19,765
Denosumab	Prolia	mab	Human	RANKL	Post-menopausal osteoporosis	Cardiology/ Endocrinology	SQ	6/1/2010	20.54	2465
Denosumab	Prolia	mab	Human	RANKL	Fracture prevention in men receiving androgen deprivation therapy for prostate cancer	Cardiology/ Endocrinology	SQ	6/1/2010	20.54	2465
Denosumab	Prolia	mab	Human	RANKL	Fracture prevention in women receiving aromatase inhibitor therapy for breast cancer	Cardiology/ Endocrinology	SQ	6/1/2010	20.54	2465
Denosumab	Xgeva	mab	Human	RANKL	Bone metastases from solid tumors	Oncology/ Hematology	SQ	6/1/2010	20.35	29,303
Denosumab	Xgeva	mab	Human	RANKL	Giant cell tumor of bone	Oncology/ Hematology	SQ	6/1/2010	20.35	34,187
Denosumab	Xgeva	mab	Human	RANKL	Hypercalcemia of malignancy	Oncology/ Hematology	SQ	6/1/2010	20.35	34,187
Belimumab	Benlysta	mab	Human	BAFF	Systemic lupus erythematosus	Immunology	IV	3/9/2011	4.92	51,645
Ipilimumab	Yervoy	mab	Human	CTLA-4	Melanoma	Oncology/ Hematology	IV	3/25/2011	164.64	138,304
Brentuximab	Adcetris	ADC	Chimeric	CD-30	Hodgkin lymphoma	Oncology/ Hematology	IV	8/19/2011	151.87	325,310
Brentuximab	Adcetris	ADC	Chimeric	CD-30	Systemic anaplastic large cell lymphoma	Oncology/ Hematology	IV	8/19/2011	151.87	325,310
Pertuzumab	Perjeta	mab	Humanized	HER2/neu	HER2+ metastatic breast cancer	Oncology/ Hematology	IV	6/8/2012	12.72	85,478
Pertuzumab	Perjeta	mab	Humanized	HER2/neu	HER2+ early stage breast cancer	Oncology/ Hematology	IV	6/8/2012	12.72	40,068
Trastuzumab	Kadcyla	mab	Humanized	HER2/neu	HER+ metastatic breast cancer	Oncology/ Hematology	IV	2/22/2013	33.78	147,551
Tocilizumab	Actemra	mab	Humanized	IL-6 receptor	Rheumatoid arthritis	Immunology	SQ	10/21/2013	6.16	25,946
Tocilizumab	Actemra	mab	Humanized	IL-6 receptor	Systemic juvenile idiopathic arthritis	Immunology	SQ	10/21/2013	6.16	51,251
Obinutuzumab	Gazyva	mab	Humanized	CD20	Chronic lymphocytic leukemia	Oncology/ Hematology	IV	11/1/2013	6.72	53,760
Obinutuzumab	Gazyva	mab	Humanized	CD20	Follicular lymphoma	Oncology/ Hematology	IV	11/1/2013	6.72	73,920
eAppendix Tabl	e 1 continue	ed								

Generic Name	Brand	Туре	Source	Target	Indication	Therapeutic	Route of	FDA	Price per	Price Annual
	Name					Area of	Administration	Approval	mg (\$)	Treatment (\$)
						Indication		Date		
Siltuximab	Sylvant	mab	Chimeric	IL-6	Multicentric Castleman's	Oncology/	IV	4/23/2014	10.29	134,773
					disease	Hematology				
Vedolizumab	Entyvio	mab	Humanized	Integrin	Ulcerative colitis	Immunology	IV	5/20/2014	20.84	56,292
				receptor	~			- / / / /		
Vedolizumab	Entyvio	mab	Humanized	Integrin	Crohn's disease	Immunology	IV	5/20/2014	20.84	56,292
D 1 1 1	17 / 1	1	TT · 1	receptor				0/4/2014	52.26	10(000
Pembrolizumab	Keytruda	mab	Humanized	PD-1	Melanoma	Oncology/	IV	9/4/2014	53.36	126,992
Dombrolimumoh	Varitaria	mah	II	DD 1	Non small call hung	Hematology	117	0/4/2014	52.26	101 417
Pembrolizumab	Keytruda	mab	Humanized	PD-1	Non-small cell lung	Uncology/	IV	9/4/2014	53.30	181,417
Dombrolizumah	Voutrudo	mah	Uumanizad	DD 1	Head and neak concer	Oncology	IV	0/4/2014	52.26	191 /17
remotonzumao	Keyttuda	mao	numanizeu	FD-1	Head and neck cancer	Hematology/	1 v	9/4/2014	55.50	101,417
Alemtuzumah	Lemtrada	mah	Humanized	CD52	Multiple sclerosis	Immunology	IV	11/14/2014	2 024 38	121 /63
Blinatumomah	Blinevto	BiTE	Murine	CD-19 and	B_cell acute	Oncology/	IV	12/3/2014	11/ 318 85	/32 025
Dimatumoniao	Billeyto	DITE	Wurne	CD-19 and	lymphoblastic leukemia	Hematology	1 V	12/3/2014	114,510.05	432,923
Nivolumah	Ondivo	mah	Human	PD-1	Melanoma	Oncology/	IV	12/22/2014	30.09	164 291
ittivotunido	opuivo	mao	Truman		Weitanoma	Hematology	1 V	12/22/2014	50.07	104,271
Secukinumab	Cosentyx	mab	Human	IL-17A	Plaque psoriasis	Immunology	SO	1/21/2015	16.26	78.038
Dinutuximab	Unituxin	mab	Chimeric	GD-2	Pediatric patients at high	Oncology/	IV	3/10/2015	564.68	284.602
				-	risk of neuroblastoma	Hematology				- ,
Alirocumab	Praluent	mab	Human	PCSK9	Heterozygous familial	Cardiology/	SQ	7/24/2015	8.96	17,472
					hypercholesterolemia	Endocrinology				,
Alirocumab	Praluent	mab	Human	PCSK9	Clinical atherosclerotic	Cardiology/	SQ	7/24/2015	8.96	17,472
					cardiovascular disease	Endocrinology				
Evolocumab	Repatha	mab	Human	PCSK9	Heterozygous familial	Cardiology/	SQ	8/27/2015	4.65	15,624
					hypercholesterolemia	Endocrinology				
Evolocumab	Repatha	mab	Human	PCSK9	Clinical atherosclerotic	Cardiology/	SQ	8/27/2015	4.65	15,624
					cardiovascular disease	Endocrinology				
Evolocumab	Repatha	mab	Human	PCSK9	Homozygous familial	Cardiology/	SQ	8/27/2015	4.65	23,436
					hypercholesterolemia	Endocrinology				
Mepolizumab	Nucala	mab	Humanized	IL-5	Severe asthma	Immunology	SQ	11/4/2015	30.90	40,170
Daratumumab	Darzalex	mab	Human	CD-38	Multiple myeloma	Oncology/	IV	11/16/2015	5.55	136,752
	D (1		EGED	NT 11 11 1	Hematology	13.7	11/04/0015	6.00	1 (2 200
Necitumumab	Portrazza	mab	Human	EGFK	Non-small cell lung	Uncology/	IV	11/24/2015	6.00	163,200
Elstumunah	Empliaiti	mah	II	CLAME7	cancer	Hematology	117	11/20/2015	7.10	124 266
Elotuzumad	Empliciti	mab	Humanized	SLAMF /	Multiple myeloma	Hematology/	1 V	11/30/2015	7.10	134,200
Ivekizumah	Talz	mah	Humanized	II_17A	Plaque proriagio	Immunology	50	3/22/2016	67.03	01 168
Reslizumah	Conceir	mah	Humanized	IL-1/A II_5	Severe asthma	ID/Allerov		3/23/2016	10.02	40 381
Atezolizumah	Tecentria	mah	Humanized	PD_I 1	Urothelial carcinoma	Oncology/	IV	5/18/2016	8.62	175 848
	rooming	mau	Tumumzeu	1 D-1/1		Hematology	1 4	5/10/2010	0.02	170,070
eAnnendix Tabl	e 1 continue	-d	I			Tienatology				
cappendix rabi	e i continut	~~			1	1	1		1	

Generic Name	Brand Name	Туре	Source	Target	Indication	Therapeutic Area of Indication	Route of Administration	FDA Approval Date	Price per mg (\$)	Price Annual Treatment (\$)
Ustekinumab	Stelara	mab	Human	IL-12, IL-23	Crohn's disease	Immunology	IV	9/23/2016	14.77	5,760
Olaratumab	Lartruvo	mab	Human	PDGFR-α	Soft tissue sarcoma	Oncology/	IV	10/29/2016	5.66	95,088
						Hematology				

ADC indicates antibody-drug conjugates; BiTE, bi-specific T-cell engagers; Fab, antigen-binding fragment antibody; ID, infectious diseases; IV,

intravenous; mab, monoclonal antibody; SQ, subcutaneous.

^aData are sorted by FDA approval date.

	Annual Price of Treatment (\$)							
Indication	Median	IQR	Minimum	Maximum				
Oncology/Hematology ^a (n = 43)	142,833	73,920-164,291	29,303	800,280				
Hematology ^b $(n = 13)$	134,773	52,056-325,310	40,302	800,280				
Bone $(n = 4)$	34,187	34,745-64,638	29,303	95,088				
Breast $(n = 5)$	85,478	82,139-147,551	40,068	158,456				
GI(n=5)	158,456	142,834-162,086	66,641	187,242				
Lung, head, or neck $(n = 6)$	163,746	162,086-181,417	155,408	181,417				
Melanoma $(n = 6)$	137,528	134,266-138,306	126,992	164,291				
Other ^c $(n = 4)$	167,152	158,456-230,225	158,456	284,602				
Cardiology/Endocrinology ^d $(n = 8)$	15,624	2465-17,472	2465	23,436				
Immunology ^e $(n = 48)$	53,969	28,056-68,770	5760	205,498				
ID/Allergy (n = 4)	29,808	20,410-35,537	11,897	40,381				
Ophthalmology $(n = 4)$	22,464	11,934-28,080	7020	28,080				

eAppendix Table 2. Summary Statistics for the Annual Price of Treatment for

Drug-Indications Approved by the FDA for Monoclonal Antibodies in 1997-2016

GI indicates gastrointestinal; ID, infectious diseases; IQR, interquartile range.

^aOncology and hematology indications include solid tumors, hematologic malignancies, and other hematologic disorders, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.

^bHematology indications include hematologic malignancies, and other hematologic disorders, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome.

^cOther types of cancer included glioblastoma, metastatic renal cell carcinoma, urothelial carcinoma, and neuroblastoma.

^dCardiology and endocrinology indications included atherosclerotic cardiovascular disease, hypercholesterolemia, and metabolic bone disease.

^eImmunology indications included autoimmune disorders, and prevention of organ transplant rejection.